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Introduction



Motivation

We would like to verify the behaviour of our programs

Transition systems model the behaviour of programs…
…hence it would be useful to state and verify properties of
transition systems
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Motivations

Ok, but what is a transition system?
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Transition systems

A transition system is a set of states

, with rules about how to go
from one state to another.
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Transition systems

The important components of a transition system are the states,
S, the actions A, and the transition relation →⊆ S ×A× S.

If (s, a, t) ∈→, we write s a→ t. So in the following transition
system, S = {s0, s1, s2}, A = {0, 1} and s0

0→ s1, s1
0→ s2 and

s2
1→ s0.
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Transition systems

We can enrich the states by assigning propositions to them, via a
function D : AP → 2S , where AP is a set of atomic propositions.
D maps a proposition to the set of states at which that proposition
is true.
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Transition systems

Example
Mod 3 counter:

s0start s1 s2
x++ x++

x++

A = {x++}, AP = {x = 0, x = 1, x = 2}

D(x = 0) = {s0}, D(x = 1) = {s1}, D(x = 2) = {s2}
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Using logic to talk about transition systems

Suppose we asked someone to make us a mod 3 counter, and we
were given a program whose transition system is the one on the
previous slide. How can we test that the program we received is
correct?

Specifically, we would give a specification of what we want, and we
want to check the actual program fits this specification. A suitable
logic gives us a way to specify the properties we want our program
to have.
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Using logic to talk about transition systems

Notice we said a suitable logic. A logic is, roughly, a way to write
things down and say what they mean.

Syntax: what we can write down
Semantics: what it means

There are many logics, and we are interested in the ones which
allow us to talk about transition systems.
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Using logic to talk about transition systems

We will define syntax by inductively defining well-formed formulas.

For example, we can define allowable formulas in a simple
propositional logic like so:

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ
Where P ∈ AP . We can use de Morgan duality to define ϕ ∨ ψ as
¬(¬ϕ ∧ ¬ψ), and define ϕ =⇒ ψ as ψ ∨ ¬ϕ.

So if AP = {p, q}, then p ∧ q and ¬q are allowable, but p ∨ q∧ or
p¬∧ p are not.

∗



Using logic to talk about transition systems

We will define syntax by inductively defining well-formed formulas.
For example, we can define allowable formulas in a simple
propositional logic like so:

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ
Where P ∈ AP . We can use de Morgan duality to define ϕ ∨ ψ as
¬(¬ϕ ∧ ¬ψ), and define ϕ =⇒ ψ as ψ ∨ ¬ϕ.

So if AP = {p, q}, then p ∧ q and ¬q are allowable, but p ∨ q∧ or
p¬∧ p are not.

∗



Using logic to talk about transition systems

We will define syntax by inductively defining well-formed formulas.
For example, we can define allowable formulas in a simple
propositional logic like so:

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ
Where P ∈ AP . We can use de Morgan duality to define ϕ ∨ ψ as
¬(¬ϕ ∧ ¬ψ), and define ϕ =⇒ ψ as ψ ∨ ¬ϕ.

So if AP = {p, q}, then p ∧ q and ¬q are allowable, but p ∨ q∧ or
p¬∧ p are not.

∗



Using logic to talk about transition systems
As for semantics, we can define what a logical formula means in
terms of transition systems by declaring when a state satisfies a
formula. If s is a state and ϕ a formula, we write s |= ϕ to say
that the state s satisfies ϕ, i.e. ϕ is true at s. Hence we can define
the semantics of a formula by assigning to a formula a set of states
at which it holds.

We will inductively define [[ϕ]] as the set of states at which ϕ
holds, thus giving meaning to our formulas in terms of states of a
transition system as follows:

[[P ]] = D(P )

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[¬ϕ]] = S \ [[ϕ]]

Then we may say s |= ϕ if s ∈ [[ϕ]].
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Using logic to talk about transition systems

Given these semantics, we can use the logic we’ve outlined above
to make a specification for our mod 3 counter. For example, in our
specification, we might require that x, the counter, is always 0, 1,
or 2. Given our atomic propositions, we can write a formula
expressing this: ϕ1 := (x = 0) ∨ (x = 1) ∨ (x = 2). Then we can
check that [[ϕ1]] = {s0, s1, s2}.

Calculating:

[[ϕ1]] = [[(x = 0) ∨ (x = 1) ∨ (x = 2)]]

= [[x = 0]] ∪ [[x = 1]] ∪ [[x = 2]]

= D(x = 0) ∪D(x = 1) ∪D(x = 2)

= {s0} ∪ {s1} ∪ {s2} = {s0, s1, s2}
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Using logic to talk about transition systems

However, the logic we’ve described is rather weak, and only allows
us to talk about states on their own, with no regard for the
transitions into and out of them.

We cannot specify other properties we might require. For example,
we might want to say that if the action x++ occurs in a state
where x = 2 is true, then the action takes us to a state where
x = 0 is true. We cannot write this with our current logic.

This is where a modal logic proves useful. Briefly, modal logics
include operators called modalities which allow us to qualify
statements. Often there are modalities � and �, which express
dual notions analogous to “possibly” and “necessarily”.
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Using logic to talk about transition systems

We can use these in a number of ways to talk about transition
systems. For example, if we restrict ourselves to talking about a
particular path in a transition system (say, a path P in the directed
graph representing a transition system), then we could interpret �ϕ
as “ϕ is true at some point along P” and �ϕ as “ϕ is true at
every point along P”.

Or we can consider the entire transition system at once, and label
modalities with actions a ∈ A, so that given a state s, 〈a〉ϕ means
“there exists an a transition out of s to a state where ϕ is true”
and [a]ϕ means “every a transition out of s goes to a state where
ϕ is true”.

We will look at such logics more precisely later in this talk.
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Lattices and the Knaster-Tarski theorem

Given a partially ordered set (L,≤), and a subset A ⊆ L, an
element u ∈ L is an upper bound for A if a ≤ u for all a ∈ A. A
least upper bound for A is an upper bound l such that l ≤ u for all
upper bounds u of A. In lattice-theoretic terms, we call the least
upper bound a join.

We may define the greatest lower bound, or meet, similarly.

If every two-element subset {a, b} ⊆ L has a meet and join,
denoted a ∧ b and a ∨ b respectively, L is called a lattice.
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Lattices and the Knaster-Tarski theorem

It’s not necessarily true that every subset of a lattice has a meet or
join: consider (Z,≤) (≤ the usual order) and the subset N. N has
a join but no meet.

If every subset A ⊆ L has a meet and a join, L is a complete
lattice. This implies there is an element at the “top” of the lattice,
> =

∧
L and one at the “bottom” of the lattice ⊥ =

∨
L.

Given a set X, the powerset (2X ,⊆) is a classic example of a
complete lattice, with > = X and ⊥ = ∅. The meet is
intersection (∧ = ∩) and join is union (∨ = ∪).
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Lattices and the Knaster-Tarski theorem

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅



Lattices and the Knaster-Tarski theorem

A function f : L→ L is order-preserving (or monotone) if
x ≤ y =⇒ f(x) ≤ f(y). An element x ∈ L is a fixed point of f if
f(x) = x. With these definitions in place, we are ready to state a
very cool theorem with an appropriately cool name:

Theorem. (Knaster-Tarski) If L is a complete lattice and
f : L→ L is an order-preserving function, then the set of fixed
points of f forms a complete lattice (in particular, there exists a
least fixed point µf and a greatest fixed point νf).

∗



Lattices and the Knaster-Tarski theorem

A function f : L→ L is order-preserving (or monotone) if
x ≤ y =⇒ f(x) ≤ f(y). An element x ∈ L is a fixed point of f if
f(x) = x. With these definitions in place, we are ready to state a
very cool theorem with an appropriately cool name:

Theorem. (Knaster-Tarski) If L is a complete lattice and
f : L→ L is an order-preserving function, then the set of fixed
points of f forms a complete lattice (in particular, there exists a
least fixed point µf and a greatest fixed point νf).

∗



Ok now that you’ve learned 2 semesters of computer science
theory, let’s get cracking.
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The modal µ-calculus Lµ



Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL (Propositional dynamic logic)
CTL (Computational tree logic)
CTL* (CTL but with a star on it, very fancy)

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.
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Syntax of Lµ

ϕ, ψ ::= P

|X |ϕ ∧ ψ | ¬ϕ | [a]ϕ | νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >

Propositional variables
Boolean stuff
Box modality. a is a label, associated with actions
Greatest fixed point of ϕ
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Syntax of Lµ

We have an additional syntactic constraint on ϕ(X) in νX.ϕ(X):
X must be free in ϕ and occur positively - in the scope of an even
number of negations.

The other usual operators can be obtained by de Morgan duality:

⊥ ≡ ¬>
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
〈a〉ϕ ≡ ¬[a]¬ϕ
µX.ϕ(X) ≡ ¬νX.¬ϕ(¬X)
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Semantics of Lµ

We can define the semantics of Lµ in terms of states of a
transition system TS over a set of states S, where we have a
function D : AP → 2S mapping atomic propositions to the states
at which they hold (D(>) = S). We define [[ϕ]], the set of all
states satisfying ϕ, inductively as follows:

[[P ]] = D(P )

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[¬ϕ]] = S \ [[ϕ]]
[[[a]ϕ]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[ϕ]]}
[[〈a〉ϕ]] = {s ∈ S | ∃t . s a→ t ∧ t ∈ [[ϕ]]}

∗



Semantics of Lµ

If a formula contains a variable X, we interpret [[ϕ(X)]] as a
function T 7→ [[ϕ[T/X]]] mapping sets of states T ⊆ S to an
interpretation of ϕ where all instances of X have been replaced by
the states in T . We interpret this mixing of formulas and states
like this (for example):

s ∈ [[ψ ∧ T ]] if s ∈ [[ψ]] and s ∈ T

For notational simplicity we will consider formulas of a single
variable, and write [[ϕ(ψ)]] to express [[ϕ(X)]]([[ψ]]).
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Semantics of Lµ

Formulas ϕ(X) that obey the positivity restriction define
monotonic functions [[ϕ(X)]] : 2S → 2S on the powerset lattice,
which is complete. Hence we can define [[µX.ϕ(X)]] and
[[νX.ϕ(X)]] to be the least and greatest fixed points of [[ϕ(X)]].
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Recursion semantics

Lattice theory tells us that monotone functions f mapping a
complete lattice to itself have fixed points, which is how we defined
the semantics of the formulas νX.ϕ(X) and µX.ϕ(X).

Furthermore, we may obtain these fixed points by successive
iterations of f . For instance, µf =

∨
n

fn(⊥)

Hence the phrase “started from the bottom now we’re here”
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Recursion semantics

µf =
∨
n

fn(⊥)  [[µX.ϕ(X)]] =
⋃
n

[[ϕn(⊥)]]

This iteration will take at most |S|+ 1 powers of ϕ to reach the
fixed point.

[[⊥]] ⊆ [[ϕ(⊥)]] ⊆ [[ϕ(ϕ(⊥))]] ⊆ . . . ⊆ [[ϕn(⊥)]] ⊆ . . .

If the fixed point is at some power n, then there is a finite
increasing chain of sets of states which satisfy µX.ϕ(X).

“µ is finite looping”
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If the fixed point is at some power n, then there is a finite
increasing chain of sets of states which satisfy µX.ϕ(X).

“µ is finite looping”
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Recursion semantics

Example
What does this express?

µX.[a]X

[[[a]⊥]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[⊥]]}
= set of states with no outgoing a transitions

(all a paths are length 0)

[[[a][a]⊥]] ={s ∈ S | ∀t . s a→ t =⇒ t ∈ [[[a]⊥]]}
= set of states whose a transitions go

to states with no a transitions

(all a paths are length 1)

And so on. If a state s is in [[µX.[a]X]], then all a paths starting at
s are finite.
We can say TS |= ϕ if every initial state s0 is in [[ϕ]].
Hence TS |= µX.[a]X if TS contains no infinite initial a paths.
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Propositional Dynamic Logic



Introduction to PDL

Propositional Dynamic Logic is another modal logic. Labels on
modalities like 〈α〉 and [α] represent (non-deterministic) programs,
and we read formulas with these modalities as:

〈α〉ϕ 7→ “Some terminating execution of α ends in
a state satisfying ϕ”

[α]ϕ 7→ “Every execution of α leads to
a state satisfying ϕ”

∗



Introduction to PDL

If we give ourselves a set of basic atomic programs a, b, . . . which
go from state to state, we can write more complex programs with
the familiar operations in regular expressions.

If α, β are programs, then we can create the following programs:

α ∪ β : Non-deterministically choose to execute either α or β

α; β : Sequentially execute α, then β

α∗ : Execute α some finite number of times (perhaps 0)
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Syntax of PDL

Formulas in PDL follow the usual syntax

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ | [α]ϕ
We can obtain 〈α〉ϕ and ϕ ∨ ψ by taking the de Morgan dual as
usual.

Formulas express properties of states in transition systems, so we
may make judgements such as s |= ϕ for some state s, and extend
the satisfaction relation to transition systems, such that TS |= ϕ if
every initial state s0 |= ϕ.
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Small Model Property

PDL (like the other logics mentioned earlier) has the small model
property, which means that if ϕ is satisfiable, i.e. if there is a
transition system TS such that TS |= ϕ, then there is a finite
transition system TSFIN such that TSFIN |= ϕ.
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Small Model Property

The proof of the Small Model Property for PDL uses filtration, in
which we basically collapse states which are suitably
indistinguishable into a single state, giving a new model satisfying
the given ϕ.

In this way, we get a usable method to transform transition
systems satisfying ϕ into other, finite transition systems.
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Small Model Property

Formally, because this is both cool and crucial to our main result:
suppose TS |= ϕ.

Let Γ be the set of all sub-formulas of ϕ and their negations; Γ is
finite. Define an equivalence relation ∼ on the states S in TS such
that s ∼ t if for all ψ ∈ Γ, s |= ψ ⇐⇒ t |= ψ.

There are at most 2|Γ| equivalence classes in S/∼ (2 possible truth
values for each sub-formula); if we let [s], [t] ∈ S/∼ represent
states in a new TSFIN , with [s]

a→ [t] if for some s′ ∈ [s] and
t′ ∈ [t], s′ a→ t′, then one can show TSFIN also satisfies ϕ.
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Expressing PDL in Lµ



Expressing the modalities

Expressing PDL with the tools available in Lµ is simple - the
syntax and semantics are similar, with the exception of the ways in
which we may combine programs in PDL. The translations for
these are still straightforward:

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ
〈α1 ; α2〉ϕ ≡ 〈α1〉〈α2〉ϕ
〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X
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Expressing the modalities

Verifying these formulas are equivalent is an exercise in semantics;
let’s look at the most interesting case:

〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

Using our iteration again, [[ϕ ∨ 〈α〉⊥]] is the set of all states
satisfying ϕ (no states satisfy 〈α〉⊥). Then [[ϕ ∨ 〈α〉(ϕ ∨ 〈α〉⊥)]] is
the set of all states which either satisfy ϕ, or in which there is a α
transition to a state satisfying ϕ.

Iterating this, s |= µX.ϕ ∨ 〈α〉X if and only if there is an α path
from s reaching a state satisfying ϕ. This is precisely the condition
defining 〈α∗〉ϕ.
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Showing Lµ is strictly more expressive

Our final goal is to show that there is a formula in Lµ with no PDL
equivalant - two formulas are equivalent if they agree on every TS.

We will use our old friend µX.[a]X – recall TS |= µX.[a]X if
there are no infinite initial a paths in TS.

Suppose ϕ is a PDL formula which is equivalent to µX.[a]X.
Then if TS |= µX.[a]X, TS |= ϕ as well.
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Showing Lµ is strictly more expressive

Consider the following transition system TS with initial state s:

s

...

· · ·

. . .

a

a a a
a

a a

a

a

a

a

a

Every path from s is finite length, hence TS |= µX.[a]X.
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Showing Lµ is strictly more expressive

If ϕ (the PDL formula) is equivalent to µX.[a]X, then TS |= ϕ as
well.

By the proof of the small model property, we can then collapse TS
to a finite TSFIN which also satisfies ϕ. Since ϕ ≡ µX.[a]X, it
follows that TSFIN |= µX.[a]X.

But TSFIN must contain a loop as a result of the filtration
process, so there is an infinite a path. This gives a contradiction.
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Showing Lµ is strictly more expressive

So there is no PDL formula equivalent to µX.[a]X, and Lµ is
strictly more expressive than PDL.

Thank you for your time! Questions?
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