
The Expressive Power of the Modal µ-Calculus

Matt Wetmore

November 14, 2014

Introduction
The setting
Syntax of Lµ
Semantics of Lµ
Recursion semantics

Propositional Dynamic Logic
Introduction to PDL
Syntax of PDL
Small Model Property

Expressing PDL in Lµ
Expressing the modalities
Showing Lµ is strictly more expressive

Introduction
“Started from the bottom now we here”

– Aubrey “Drake” Graham

The setting

We would like to verify the behaviour of our programs

Transition systems model the behaviour of programs…
…hence it would be useful to state and verify properties of
transition systems

∗

The setting

We would like to verify the behaviour of our programs
Transition systems model the behaviour of programs…

…hence it would be useful to state and verify properties of
transition systems

∗

The setting

We would like to verify the behaviour of our programs
Transition systems model the behaviour of programs…
…hence it would be useful to state and verify properties of
transition systems

∗

The setting

Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL
CTL
CTL*

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.

∗

The setting

Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL

CTL
CTL*

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.

∗

The setting

Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL
CTL

CTL*

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.

∗

The setting

Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL
CTL
CTL*

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.

∗

The setting

Over the latter half of the 20th century, computer scientists
devised a number of logics which could be used to express
properties of transition systems, such as

PDL
CTL
CTL*

In 1983, Dexter Kozen introduced the modal µ-calculus Lµ, which
enhances a simple syntax with powerful fixed-point operators and
subsumes the logics above.
Today we will show that Lµ subsumes PDL in particular. The goal
is to show that Lµ is strictly more expressive than PDL.

∗

Syntax of Lµ

ϕ, ψ ::= P

|X |ϕ ∧ ψ | ¬ϕ | [a]ϕ | νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >

Propositional variables
Boolean stuff
Box modality. a is a label, associated with actions
Greatest fixed point of ϕ

∗

Syntax of Lµ

ϕ, ψ ::= P |X

|ϕ ∧ ψ | ¬ϕ | [a]ϕ | νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >
Propositional variables

Boolean stuff
Box modality. a is a label, associated with actions
Greatest fixed point of ϕ

∗

Syntax of Lµ

ϕ, ψ ::= P |X |ϕ ∧ ψ | ¬ϕ

| [a]ϕ | νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >
Propositional variables
Boolean stuff

Box modality. a is a label, associated with actions
Greatest fixed point of ϕ

∗

Syntax of Lµ

ϕ, ψ ::= P |X |ϕ ∧ ψ | ¬ϕ | [a]ϕ

| νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >
Propositional variables
Boolean stuff
Box modality. a is a label, associated with actions

Greatest fixed point of ϕ

∗

Syntax of Lµ

ϕ, ψ ::= P |X |ϕ ∧ ψ | ¬ϕ | [a]ϕ | νX.ϕ(X)

Atomic propositions P ∈ AP . Includes >
Propositional variables
Boolean stuff
Box modality. a is a label, associated with actions
Greatest fixed point of ϕ

∗

Syntax of Lµ

We have an additional syntactic constraint on ϕ(X) in νX.ϕ(X):
X must be free in ϕ and occur positively - in the scope of an even
number of negations.

The other usual operators can be obtained by de Morgan duality:

⊥ ≡ ¬>
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
〈a〉ϕ ≡ ¬[a]¬ϕ
µX.ϕ(X) ≡ ¬νX.¬ϕ(¬X)

∗

Syntax of Lµ

We have an additional syntactic constraint on ϕ(X) in νX.ϕ(X):
X must be free in ϕ and occur positively - in the scope of an even
number of negations.
The other usual operators can be obtained by de Morgan duality:

⊥ ≡ ¬>
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
〈a〉ϕ ≡ ¬[a]¬ϕ
µX.ϕ(X) ≡ ¬νX.¬ϕ(¬X)

∗

Semantics of Lµ

We can define the semantics of Lµ in terms of states of a
transition system TS over a set of states S, where we have a
function D : AP → 2S mapping atomic propositions to the states
at which they hold (D(>) = S). We define [[ϕ]], the set of all
states satisfying ϕ, inductively as follows:

[[P]] = D(P)

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[¬ϕ]] = S \ [[ϕ]]
[[[a]ϕ]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[ϕ]]}
[[〈a〉ϕ]] = {s ∈ S | ∃t . s a→ t ∧ t ∈ [[ϕ]]}

∗

Semantics of Lµ

If a formula contains a variable X, we interpret [[ϕ(X)]] as a
function T 7→ [[ϕ[T/X]]] mapping sets of states T ⊆ S to an
interpretation of ϕ where all instances of X have been replaced by
the states in T . We interpret this mixing of formulas and states
like this (for example):

s ∈ [[ψ ∧ T]] if s ∈ [[ψ]] and s ∈ T

For notational simplicity we will consider formulas of a single
variable, and write [[ϕ(ψ)]] to express [[ϕ(X)]]([[ψ]]).

∗

Semantics of Lµ

If a formula contains a variable X, we interpret [[ϕ(X)]] as a
function T 7→ [[ϕ[T/X]]] mapping sets of states T ⊆ S to an
interpretation of ϕ where all instances of X have been replaced by
the states in T . We interpret this mixing of formulas and states
like this (for example):

s ∈ [[ψ ∧ T]] if s ∈ [[ψ]] and s ∈ T

For notational simplicity we will consider formulas of a single
variable, and write [[ϕ(ψ)]] to express [[ϕ(X)]]([[ψ]]).

∗

Semantics of Lµ

Formulas ϕ(X) that obey the positivity restriction define
monotonic functions [[ϕ(X)]] : 2S → 2S on the powerset lattice,
which is complete. Hence we can define [[µX.ϕ(X)]] and
[[νX.ϕ(X)]] to be the least and greatest fixed points of [[ϕ(X)]].

∗

Recursion semantics

Lattice theory tells us that monotone functions f mapping a
complete lattice to itself have fixed points, which is how we defined
the semantics of the formulas νX.ϕ(X) and µX.ϕ(X).

Furthermore, we may obtain these fixed points by successive
iterations of f . For instance, µf =

∨
n

fn(⊥)

Hence the phrase “started from the bottom now we’re here”

∗

Recursion semantics

Lattice theory tells us that monotone functions f mapping a
complete lattice to itself have fixed points, which is how we defined
the semantics of the formulas νX.ϕ(X) and µX.ϕ(X).

Furthermore, we may obtain these fixed points by successive
iterations of f . For instance, µf =

∨
n

fn(⊥)

Hence the phrase “started from the bottom now we’re here”

∗

Recursion semantics

Lattice theory tells us that monotone functions f mapping a
complete lattice to itself have fixed points, which is how we defined
the semantics of the formulas νX.ϕ(X) and µX.ϕ(X).

Furthermore, we may obtain these fixed points by successive
iterations of f . For instance, µf =

∨
n

fn(⊥)

Hence the phrase “started from the bottom now we’re here”

∗

Recursion semantics

µf =
∨
n

fn(⊥) [[µX.ϕ(X)]] =
⋃
n

[[ϕn(⊥)]]

This iteration will take at most |S|+ 1 powers of ϕ to reach the
fixed point.

[[⊥]] ⊆ [[ϕ(⊥)]] ⊆ [[ϕ(ϕ(⊥))]] ⊆ . . . ⊆ [[ϕn(⊥)]] ⊆ . . .

If the fixed point is at some power n, then there is a finite
increasing chain of sets of states which satisfy µX.ϕ(X).

“µ is finite looping”

∗

Recursion semantics

µf =
∨
n

fn(⊥) [[µX.ϕ(X)]] =
⋃
n

[[ϕn(⊥)]]

This iteration will take at most |S|+ 1 powers of ϕ to reach the
fixed point.

[[⊥]] ⊆ [[ϕ(⊥)]] ⊆ [[ϕ(ϕ(⊥))]] ⊆ . . . ⊆ [[ϕn(⊥)]] ⊆ . . .

If the fixed point is at some power n, then there is a finite
increasing chain of sets of states which satisfy µX.ϕ(X).

“µ is finite looping”

∗

Recursion semantics

Example
What does this express?

µX.[a]X

[[[a]⊥]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[⊥]]}
= set of states with no outgoing a transitions

(all a paths are length 0)

[[[a][a]⊥]] ={s ∈ S | ∀t . s a→ t =⇒ t ∈ [[[a]⊥]]}
= set of states whose a transitions go

to states with no a transitions

(all a paths are length 1)

And so on. If a state s is in [[µX.[a]X]], then all a paths starting at
s are finite.
We can say TS |= ϕ if every initial state s0 is in [[ϕ]].
Hence TS |= µX.[a]X if TS contains no infinite initial a paths.

∗

Recursion semantics

Example
What does this express?

µX.[a]X

[[[a]⊥]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[⊥]]}
= set of states with no outgoing a transitions

(all a paths are length 0)

[[[a][a]⊥]] ={s ∈ S | ∀t . s a→ t =⇒ t ∈ [[[a]⊥]]}
= set of states whose a transitions go

to states with no a transitions

(all a paths are length 1)

And so on. If a state s is in [[µX.[a]X]], then all a paths starting at
s are finite.
We can say TS |= ϕ if every initial state s0 is in [[ϕ]].
Hence TS |= µX.[a]X if TS contains no infinite initial a paths.

∗

Recursion semantics

Example
What does this express?

µX.[a]X

[[[a]⊥]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[⊥]]}
= set of states with no outgoing a transitions

(all a paths are length 0)

[[[a][a]⊥]] ={s ∈ S | ∀t . s a→ t =⇒ t ∈ [[[a]⊥]]}
= set of states whose a transitions go

to states with no a transitions

(all a paths are length 1)

And so on. If a state s is in [[µX.[a]X]], then all a paths starting at
s are finite.
We can say TS |= ϕ if every initial state s0 is in [[ϕ]].
Hence TS |= µX.[a]X if TS contains no infinite initial a paths.

∗

Recursion semantics

Example
What does this express?

µX.[a]X

[[[a]⊥]] = {s ∈ S | ∀t . s a→ t =⇒ t ∈ [[⊥]]}
= set of states with no outgoing a transitions

(all a paths are length 0)

[[[a][a]⊥]] ={s ∈ S | ∀t . s a→ t =⇒ t ∈ [[[a]⊥]]}
= set of states whose a transitions go

to states with no a transitions

(all a paths are length 1)

And so on. If a state s is in [[µX.[a]X]], then all a paths starting at
s are finite.
We can say TS |= ϕ if every initial state s0 is in [[ϕ]].
Hence TS |= µX.[a]X if TS contains no infinite initial a paths.

∗

Propositional Dynamic Logic
“I’ve got a proposition for you...”

– Joseph “Proposition Joe” Stewart

Introduction to PDL

Propositional Dynamic Logic is another modal logic. Labels on
modalities like 〈α〉 and [α] represent (non-deterministic) programs,
and we read formulas with these modalities as:

〈α〉ϕ 7→ “Some terminating execution of α ends in
a state satisfying ϕ”

[α]ϕ 7→ “Every execution of α leads to
a state satisfying ϕ”

∗

Introduction to PDL

If we give ourselves a set of basic atomic programs a, b, . . . which
go from state to state, we can write more complex programs with
the familiar operations in regular expressions.

If α, β are programs, then we can create the following programs:

α ∪ β : Non-deterministically choose to execute either α or β

α; β : Sequentially execute α, then β

α∗ : Execute α some finite number of times (perhaps 0)

∗

Introduction to PDL

If we give ourselves a set of basic atomic programs a, b, . . . which
go from state to state, we can write more complex programs with
the familiar operations in regular expressions.

If α, β are programs, then we can create the following programs:

α ∪ β : Non-deterministically choose to execute either α or β

α; β : Sequentially execute α, then β

α∗ : Execute α some finite number of times (perhaps 0)

∗

Introduction to PDL

If we give ourselves a set of basic atomic programs a, b, . . . which
go from state to state, we can write more complex programs with
the familiar operations in regular expressions.

If α, β are programs, then we can create the following programs:

α ∪ β : Non-deterministically choose to execute either α or β

α; β : Sequentially execute α, then β

α∗ : Execute α some finite number of times (perhaps 0)

∗

Introduction to PDL

If we give ourselves a set of basic atomic programs a, b, . . . which
go from state to state, we can write more complex programs with
the familiar operations in regular expressions.

If α, β are programs, then we can create the following programs:

α ∪ β : Non-deterministically choose to execute either α or β

α; β : Sequentially execute α, then β

α∗ : Execute α some finite number of times (perhaps 0)

∗

Syntax of PDL

Formulas in PDL follow the usual syntax

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ | [α]ϕ
We can obtain 〈α〉ϕ and ϕ ∨ ψ by taking the de Morgan dual as
usual.

Formulas express properties of states in transition systems, so we
may make judgements such as s |= ϕ for some state s, and extend
the satisfaction relation to transition systems, such that TS |= ϕ if
every initial state s0 |= ϕ.

∗

Syntax of PDL

Formulas in PDL follow the usual syntax

ϕ, ψ ::= P |ϕ ∧ ψ | ¬ϕ | [α]ϕ
We can obtain 〈α〉ϕ and ϕ ∨ ψ by taking the de Morgan dual as
usual.
Formulas express properties of states in transition systems, so we
may make judgements such as s |= ϕ for some state s, and extend
the satisfaction relation to transition systems, such that TS |= ϕ if
every initial state s0 |= ϕ.

∗

Small Model Property

PDL (like the other logics mentioned earlier) has the small model
property, which means that if ϕ is satisfiable, i.e. if there is a
transition system TS such that TS |= ϕ, then there is a finite
transition system TSFIN such that TSFIN |= ϕ.

∗

Small Model Property

The proof of the Small Model Property for PDL uses filtration, in
which we basically collapse states which are suitably
indistinguishable into a single state, giving a new model satisfying
the given ϕ.

In this way, we get a usable method to transform transition
systems satisfying ϕ into other, finite transition systems.

∗

Small Model Property

The proof of the Small Model Property for PDL uses filtration, in
which we basically collapse states which are suitably
indistinguishable into a single state, giving a new model satisfying
the given ϕ.

In this way, we get a usable method to transform transition
systems satisfying ϕ into other, finite transition systems.

∗

Small Model Property

Formally, because this is both cool and crucial to our main result:
suppose TS |= ϕ.

Let Γ be the set of all sub-formulas of ϕ and their negations; Γ is
finite. Define an equivalence relation ∼ on the states S in TS such
that s ∼ t if for all ψ ∈ Γ, s |= ψ ⇐⇒ t |= ψ.

There are at most 2|Γ| equivalence classes in S/∼ (2 possible truth
values for each sub-formula); if we let [s], [t] ∈ S/∼ represent
states in a new TSFIN , with [s]

a→ [t] if for some s′ ∈ [s] and
t′ ∈ [t], s′ a→ t′, then one can show TSFIN also satisfies ϕ.

∗

Small Model Property

Formally, because this is both cool and crucial to our main result:
suppose TS |= ϕ.

Let Γ be the set of all sub-formulas of ϕ and their negations; Γ is
finite. Define an equivalence relation ∼ on the states S in TS such
that s ∼ t if for all ψ ∈ Γ, s |= ψ ⇐⇒ t |= ψ.

There are at most 2|Γ| equivalence classes in S/∼ (2 possible truth
values for each sub-formula); if we let [s], [t] ∈ S/∼ represent
states in a new TSFIN , with [s]

a→ [t] if for some s′ ∈ [s] and
t′ ∈ [t], s′ a→ t′, then one can show TSFIN also satisfies ϕ.

∗

Small Model Property

Formally, because this is both cool and crucial to our main result:
suppose TS |= ϕ.

Let Γ be the set of all sub-formulas of ϕ and their negations; Γ is
finite. Define an equivalence relation ∼ on the states S in TS such
that s ∼ t if for all ψ ∈ Γ, s |= ψ ⇐⇒ t |= ψ.

There are at most 2|Γ| equivalence classes in S/∼ (2 possible truth
values for each sub-formula); if we let [s], [t] ∈ S/∼ represent
states in a new TSFIN , with [s]

a→ [t] if for some s′ ∈ [s] and
t′ ∈ [t], s′ a→ t′, then one can show TSFIN also satisfies ϕ.

∗

Expressing PDL in Lµ
“I’m expressin’ with my full capabilities”

– Dr. Dre

Expressing the modalities

Expressing PDL with the tools available in Lµ is simple - the
syntax and semantics are similar, with the exception of the ways in
which we may combine programs in PDL. The translations for
these are still straightforward:

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ
〈α1 ; α2〉ϕ ≡ 〈α1〉〈α2〉ϕ
〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

∗

Expressing the modalities

Expressing PDL with the tools available in Lµ is simple - the
syntax and semantics are similar, with the exception of the ways in
which we may combine programs in PDL. The translations for
these are still straightforward:

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ

〈α1 ; α2〉ϕ ≡ 〈α1〉〈α2〉ϕ
〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

∗

Expressing the modalities

Expressing PDL with the tools available in Lµ is simple - the
syntax and semantics are similar, with the exception of the ways in
which we may combine programs in PDL. The translations for
these are still straightforward:

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ
〈α1 ; α2〉ϕ ≡ 〈α1〉〈α2〉ϕ

〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

∗

Expressing the modalities

Expressing PDL with the tools available in Lµ is simple - the
syntax and semantics are similar, with the exception of the ways in
which we may combine programs in PDL. The translations for
these are still straightforward:

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ
〈α1 ; α2〉ϕ ≡ 〈α1〉〈α2〉ϕ
〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

∗

Expressing the modalities

Verifying these formulas are equivalent is an exercise in semantics;
let’s look at the most interesting case:

〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

Using our iteration again, [[ϕ ∨ 〈α〉⊥]] is the set of all states
satisfying ϕ (no states satisfy 〈α〉⊥). Then [[ϕ ∨ 〈α〉(ϕ ∨ 〈α〉⊥)]] is
the set of all states which either satisfy ϕ, or in which there is a α
transition to a state satisfying ϕ.

Iterating this, s |= µX.ϕ ∨ 〈α〉X if and only if there is an α path
from s reaching a state satisfying ϕ. This is precisely the condition
defining 〈α∗〉ϕ.

∗

Expressing the modalities

Verifying these formulas are equivalent is an exercise in semantics;
let’s look at the most interesting case:

〈α∗〉ϕ ≡ µX.ϕ ∨ 〈α〉X

Using our iteration again, [[ϕ ∨ 〈α〉⊥]] is the set of all states
satisfying ϕ (no states satisfy 〈α〉⊥). Then [[ϕ ∨ 〈α〉(ϕ ∨ 〈α〉⊥)]] is
the set of all states which either satisfy ϕ, or in which there is a α
transition to a state satisfying ϕ.

Iterating this, s |= µX.ϕ ∨ 〈α〉X if and only if there is an α path
from s reaching a state satisfying ϕ. This is precisely the condition
defining 〈α∗〉ϕ.

∗

Showing Lµ is strictly more expressive

Our final goal is to show that there is a formula in Lµ with no PDL
equivalant - two formulas are equivalent if they agree on every TS.

We will use our old friend µX.[a]X – recall TS |= µX.[a]X if
there are no infinite initial a paths in TS.

Suppose ϕ is a PDL formula which is equivalent to µX.[a]X.
Then if TS |= µX.[a]X, TS |= ϕ as well.

∗

Showing Lµ is strictly more expressive

Our final goal is to show that there is a formula in Lµ with no PDL
equivalant - two formulas are equivalent if they agree on every TS.

We will use our old friend µX.[a]X – recall TS |= µX.[a]X if
there are no infinite initial a paths in TS.

Suppose ϕ is a PDL formula which is equivalent to µX.[a]X.
Then if TS |= µX.[a]X, TS |= ϕ as well.

∗

Showing Lµ is strictly more expressive

Our final goal is to show that there is a formula in Lµ with no PDL
equivalant - two formulas are equivalent if they agree on every TS.

We will use our old friend µX.[a]X – recall TS |= µX.[a]X if
there are no infinite initial a paths in TS.

Suppose ϕ is a PDL formula which is equivalent to µX.[a]X.
Then if TS |= µX.[a]X, TS |= ϕ as well.

∗

Showing Lµ is strictly more expressive

Consider the following transition system TS with initial state s:

s

...

· · ·

. . .

a

a a a
a

a a

a

a

a

a

a

Every path from s is finite length, hence TS |= µX.[a]X.

∗

Showing Lµ is strictly more expressive

Consider the following transition system TS with initial state s:

s

...

· · ·

. . .

a

a a a
a

a a

a

a

a

a

a

Every path from s is finite length, hence TS |= µX.[a]X.

∗

Showing Lµ is strictly more expressive

If ϕ (the PDL formula) is equivalent to µX.[a]X, then TS |= ϕ as
well.

By the proof of the small model property, we can then collapse TS
to a finite TSFIN which also satisfies ϕ. Since ϕ ≡ µX.[a]X, it
follows that TSFIN |= µX.[a]X.

But TSFIN must contain a loop as a result of the filtration
process, so there is an infinite a path. This gives a contradiction.

∗

Showing Lµ is strictly more expressive

If ϕ (the PDL formula) is equivalent to µX.[a]X, then TS |= ϕ as
well.

By the proof of the small model property, we can then collapse TS
to a finite TSFIN which also satisfies ϕ. Since ϕ ≡ µX.[a]X, it
follows that TSFIN |= µX.[a]X.

But TSFIN must contain a loop as a result of the filtration
process, so there is an infinite a path. This gives a contradiction.

∗

Showing Lµ is strictly more expressive

So there is no PDL formula equivalent to µX.[a]X, and Lµ is
strictly more expressive than PDL.

Thank you for your time! Questions?

∗

Showing Lµ is strictly more expressive

So there is no PDL formula equivalent to µX.[a]X, and Lµ is
strictly more expressive than PDL.

Thank you for your time! Questions?

∗

	Introduction
	The setting
	Syntax of L
	Semantics of L
	Recursion semantics

	Propositional Dynamic Logic
	Introduction to PDL
	Syntax of PDL
	Small Model Property

	Expressing PDL in L
	Expressing the modalities
	Showing L is strictly more expressive

